Pesticides |
Pesticides are substances or a mixture of substances, of chemical or biological origin, used by human society to mitigate or repel pests such as bacteria, nematodes, insects, mites, mollusks, birds, rodents, and other organisms that affect food production or human health.
They usually act by disrupting some component of the pest’s life processes to kill or inactivate it. In a legal context, pesticides also include substances such as insect attractants, herbicides, plant defoliants, desiccants, and plant growth regulators.
History of Pesticides
The concept of pesticides is not new. Around 1000 B.C.E. Homer referred to the use of sulfur to fumigate homes and by 900 C.E. the Chinese were using arsenic to control garden pests. Although major pest outbreaks have occurred, such as potato blight (Phytopthora infestans), which destroyed most potato crops in Ireland during the mid-nineteenth century, not until later that century were pesticides such as arsenic, pyrethrum, lime sulfur, and mercuric chloride used.
Between this period and World War II, inorganic and biological substances, such as Paris green, lead arsenate, calcium arsenate, selenium compounds, lime–sulfur, pyrethrum, thiram, mercury, copper sulfate, derris, and nicotine were used, but the amounts and frequency of use were limited, and most pest control employed cultural methods such as rotations, tillage, and manipulation of sowing dates.
After World War II the use of pesticides mushroomed, and there are currently more than 1,600 pesticides available and about 4.4 million tons used annually, at a cost of more than $20 billion. The United States accounts for more than 25 percent of this market.
Older Insecticides
The first synthetic organochlorine insecticide, DDT (dichlorodiphenyl-trichloroethane), discovered in Switzerland in 1939, was very effective and used extensively to control head and body lice, human disease vectors and agricultural pests, in the decades leading up to the 1970s.
Benzene hexachloride (BHC) and chlordane were discovered during World War II and toxaphene (and heptachlor) slightly later. Shortly thereafter, two cyclodiene organochlorines, aldrin and dieldrin, were introduced, followed by endrin, endosulfan, and isobenzan.
All these insecticides acted by blocking an insect’s nervous system, causing malfunction, tremors, and death. All organochlorines are relatively insoluble, persist in soils and aquatic sediments, can bioconcentrate in the tissues of invertebrates and vertebrates from their food, move up trophic chains, and affect top predators.
These properties of persistence and bioaccumulation led eventually to the withdrawal of registration and use of organochlorine insectides, from 1973 to the late 1990s, in industrialized nations, although they continued to be used in developing countries.
Organophosphate insecticides originated from compounds developed as nerve gases by Germany during World War II. Thus, those developed as insecticides, such as tetraethyl pyrophosphate (TEPP) and parathion, had high mammalian toxicities. Scores of other organophosphates including demeton, methyl schradan, phorate, diazinon, disulfoton, dimethoate trichlorophon, and mevinphos have been registered.
In insects, as in mammals, they act by inhibiting the enzyme cholinesterase (ChE) that breaks down the neurotransmitter acetylcholine (ACh) at the nerve synapse, blocking impulses and causing hyperactivity and tetanic paralysis of the insect, then death. Some are systemic in plants and animals, but most are not persistent and do not bioaccumulate in animals or have significant environmental impacts.
Carbaryl, the first carbamate insecticide, acts on nervous transmissions in insects also through effects on cholinesterase by blocking acetylcholine receptors. Other carbamate insecticides include aldicarb, methiocarb, methomyl, carbofuran, bendiocarb, and oxamyl. In general, although they are broad-spectrum insecticides, of moderate toxicity and persistence, they rarely bioaccumulate or cause major environmental impacts.
Botanical insecticides include nicotine from tobacco, pyrethrum from chrysanthemums, derris from cabbage, rotenone from beans, sabadilla from lilies, ryania from the ryania shrub, limonene from citrus peel, and neem from the tropical neem tree. Most, other than nicotine, have low levels of toxicity in mammals and birds and create few adverse environmental effects.
Newer Insecticides
Synthetic pyrethroid insecticides, with structures based on the natural compound pyrethrum, were introduced in the 1960s and include tetramethrin, resmethrin, fenvalerate, permethrin, lambda-cyalothrin, and deltamethrin, all used extensively in agriculture.
They have very low mammalian toxicities and potent insecticidal action, are photostable with low volatilities and persistence. They are broad-spectrum insecticides and may kill some natural enemies of pests. They do not bioaccumulate and have few effects on mammals, but are very toxic to aquatic invertebrates and fish.
In recent years, new classes of insecticides have been marketed, none of which are persistent or bioaccumulate. They include juvenile hormone mimics, synthetic versions of insect juvenile hormones that act by preventing immature stages of the insects from molting into an adult, and avermectins, natural products produced by soil microorganisms, insecticidal at very low concentrations. Bacillus thuringiensis toxins are proteins produced by a bacterium that is pathogenic to insects.
When activated in the insect gut, they destroy the selective permeability of the gut wall. The first strains were toxic only to Lepidoptera, but strains toxic to flies and beetles have since been developed. B. thuringiensis has been incorporated into plants genetically.
Nematicides
Soil nematocides, such as dichlopropene, methyl isocyanate, chloropicrin, and methyl bromide, are broad-spectrum soil fumigants. Others, aldicarb, dazomet, and metham sodium, act mainly through contact. All have very high mammalian toxicities and can kill a wide range of organisms from both the plant and animal kingdoms. Although transient in soil, they may have drastic ecological effects on soil systems.
Molluscicides
Two molluscicides, metaldehyde and methiocarb, are used as baits against slugs and snails. Although of high mammalian toxicity, they cause few problems other than the occasional accidental death of wild mammals. Several molluscicides, used to control aquatic snails, N-trityl morpholine, copper sulfate, niclosamine, and sodium pentachlorophenate, are toxic to fish.
Herbicides
Hormone-type herbicides such as 2,4,5-T; 2,4-D; and MCPA; were discovered during the 1940s. They do not persist in soil, are selective in their toxicity to plants, are of low mammalian toxicity, cause few direct environmental problems, but are relatively soluble and reach waterways and groundwater.
Contact herbicides, which kill weeds through foliage applications, include dintrophenols, cyanophenols, pentachlorophenol, and paraquat. Most are nonpersistent, but triazines can persist in the soil for several years, are slightly toxic to soil organisms and moderately so to aquatic organisms. Herbicides cause few direct environmental problems other than their indirect effects, in leaving bare soil, which is free of plant cover and susceptible to erosion.
Fungicides
Many different types of fungicides are used, of widely differing chemical structures. Most have relatively low mammalian toxicities, and except for carbamates such as benomyl, a relatively narrow spectrum of toxicity to soil- inhabiting and aquatic organisms. Their greatest environmental impact is toxicity to soil microorganisms, but these effects are short term.
Effects on the Terrestrial Environment
Pesticides are biocides designed to be toxic to particular groups of organisms. They can have considerable adverse environmental effects, which may be extremely diverse: sometimes relatively obvious but often extremely subtle and complex. Some pesticides are highly specific and others broad spectrum; both types can affect terrestrial wildlife, soil, water systems, and humans.
Pesticides have had some of their most striking effects on birds, particularly those in the higher trophic levels of food chains, such as bald eagles, hawks, and owls. These birds are often rare, endangered, and susceptible to pesticide residues such as those occurring from the bioconcentration of organochlorine insecticides through terrestrial food chains.
Pesticides may kill grain- and plant-feeding birds, and the elimination of many rare species of ducks and geese has been reported. Populations of insect-eating birds such as partridges, grouse, and pheasants have decreased due to the loss of their insect food in agricultural fields through the use of insecticides.
Bees are extremely important in the pollination of crops and wild plants, and although pesticides are screened for toxicity to bees, and the use of pesticides toxic to bees is permitted only under stringent conditions, many bees are killed by pesticides, resulting in the considerably reduced yield of crops dependent on bee pollination.
The literature on pest control lists many examples of new pest species that have developed when their natural enemies are killed by pesticides. This has created a further dependence on pesticides not dissimilar to drug dependence. Finally, the effects of pesticides on the biodiversity of plants and animals in agricultural landscapes, whether caused directly or indirectly by pesticides, constitute a major adverse environmental impact of pesticides.
Effects on the Aquatic Environment
The movement of pesticides into surface and groundwater is well documented. Wildlife is affected, and human drinking water is sometimes contaminated beyond acceptable safety levels. Sediments dredged from U.S. waterways are often so heavily contaminated with persistent and other pesticide residues that it becomes problematic to safely dispose of them on land.
A major environmental impact has been the widespread mortality of fish and marine invertebrates due to the contamination of aquatic systems by pesticides. This has resulted from the agricultural contamination of waterways through fallout, drainage, or runoff erosion, and from the discharge of industrial effluents containing pesticides into waterways. Historically, most of the fish in Europe’s Rhine River were killed by the discharge of pesticides, and at one time fish populations in the Great Lakes became very low due to pesticide contamination.
Additionally, many of the organisms that provide food for fish are extremely susceptible to pesticides, so the indirect effects of pesticides on the fish food supply may have an even greater effect on fish populations. Some pesticides, such as pyrethroid insecticides, are extremely toxic to most aquatic organisms. It is evident that pesticides cause major losses in global fish production.
Effects on Humans
The most important aspect of pesticides is how they affect humans. There is increasing anxiety about the importance of small residues of pesticides, often suspected of being carcinogens or disrupting endocrine activities, in drinking water and food. In spite of stringent regulations by international and national regulatory agencies, reports of pesticide residues in human foods, both imported and home-produced, are numerous.
Over the last fifty years many human illnesses and deaths have occurred as a result of exposure to pesticides, with up to 20,000 deaths reported annually. Some of these are suicides, but most involve some form of accidental exposure to pesticides, particularly among farmers and spray operators in developing countries, who are careless in handling pesticides or wear insufficient protective clothing and equipment.
Moreover, there have been major accidents involving pesticides that have led to the death or illness of many thousands. One instance occurred in Bhopal, India, where more than 5,000 deaths resulted from exposure to accidental emissions of methyl isocyanate from a pesticide factory.